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Molecular materials with a polar arrangement of the constituent dipoles are good candidates for exhibiting
piezoelectric properties directly related to the strain-induced polarization. We assess, from first principles, the
properties of the metal-organic molecular crystal �4-dimethylaminopyridyl�bis�acetylacetato�zinc�II� in pres-
ence of strain. The spontaneous polarization and the piezoelectric properties are studied by means of the
modern theory of polarization. The cooperative interaction among molecular chains is shown to lead to a
collective polarization enhancement effect. Some theoretical issues concerning the multivalued behavior of the
Berry phase are also illustrated.
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I. INTRODUCTION

Piezoelectric materials have a key role in the technologi-
cal industry. Their importance is due to their wide use in
manufacturing resonators, filters, and sensors. Indeed, piezo-
electrics may combine sensing function �for the conversion
of mechanical energy into electricity� with actuating func-
tions �for the conversion of electricity to mechanical energy�.
Piezoelectrics are usually ceramics but a new interest toward
piezoelectric organic materials is growing up, caused by their
low weight, flexibility, and chemical inertness. Typically, or-
ganic crystals showing piezoelectric properties are modular
systems with a polar arrangement of the constituent dipolar
units.1 A special case is represented by molecular crystals
resulting from a perfect polar assembly of molecular dipoles
along a crystallographic axis. Simple “screw-shaped” metal-
organic molecules, including vapor-deposited films,2–4 have
been found to show a dominant tendency toward such orga-
nization in the solid state. The metal-organic molecular crys-
tal �4-dimethylaminopyridyl�bis�acetylacetato�zinc�II�
�ZNDA� belongs to this family of compounds. A single-
crystal study2 showed that ZNDA belongs to the noncen-
trosymmetric orthorhombic space-group Fdd2; more signifi-
cantly, the molecular organization is perfectly polar with all
the molecules aligned parallel to the z axis, as clearly shown
in Fig. 1. ZNDA is characterized by good thermal stability
and transparency; moreover, it is found to be organized as
uniaxially oriented crystallites in vapor-deposited thin films
on glass substrate.5

In this paper an ab initio study of piezoelectricity in this
new material is performed by means of the density-
functional theory. We employ the modern theory of polariza-
tion to compute the spontaneous polarization and its related
quantities. Quantitative assertions about the piezoelectric
properties are carried out. A detailed analysis on the relation-
ship between the molecular dipole moment and the investi-
gated macroscopic properties of the crystal evidences a col-
lective polarization enhancement effect. The latter is related
to the intermolecular interactions along and orthogonally to
the polar axis direction.

The paper is organized as follows. In Sec. II, we briefly
review the formulation of the modern theory of polarization

in terms of Berry phase �BP� calculation and summarize the
computational details. In Sec. III, we discuss the results of
our calculation relating the investigated macroscopic proper-
ties of the molecular crystal with the intermolecular interac-
tions. Finally, in Sec. IV, some conclusions are drawn.

II. METHODOLOGY

A. Modern theory of polarization

For a finite system, the polarization is defined as the total
dipole moment per unit volume:

P =
1

V��
�

q�R� − e�
V

rn�r�dr� , �1�

where V is the volume of the sample, q� and R� are the
charge and the position of the �th ion, and e and n�r� are the
electron charge and density, respectively. The definition in
Eq. �1� cannot be generalized for an infinite periodic crystal

FIG. 1. �Color online� A schematic representation of the mo-
lecular ZNDA crystal. The screw-shaped molecules �shown in �a��
are disposed with the polar backbone aligned along the polar axis
�as shown in �b��, giving rise to packed molecular chains �see �c��.
The orthorhombic unit cell �black box� contains eight molecules,
one per chain. In �b� and �c� H atoms are omitted for clarity.
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by replacing the sample volume with that of the unit cell
because of the nature of the r operator. Indeed, in this way,
the macroscopic polarization of a crystal would be defined as
the dipole moment per unit cell and different choices of the
lattice unit cell would yield to different values of P, which is
unphysical. To better understand this point, a toy model is
shown in Fig. 2.

Moreover, the measured quantities are generally varia-
tions in polarization, defined with respect to a reference con-
figuration. This is the case of piezoelectricity �derivative of
the polarization with respect to the applied strain� and spon-
taneous polarization in ferroelectrics �finite difference be-
tween two symmetric configurations in the hysteresis cycle�.
All these quantities are measured as bulk properties, whereas
Eq. �1� leads to a polarization which depends on the trunca-
tion of the sample.

The modern theory of polarization �MTP� sheds light on
how to define the polarization in crystalline dielectrics. The
theoretical approach is described in detail in the papers by
King-Smith and Vanderbilt6 and by Resta;7 here we only
outline the main points.

The successful strategy for achieving a proper definition
for the bulk crystal is to switch from a “charge” to a “cur-
rent” description of the polarization variation. Within a finite
system, the charge �the modulus of the wave function� is
related to the current �the phase of the wave function�
through the continuity equation �the variation in the charge at
surface during a continuous transformation between two con-
figurations is related to the current that flows in the bulk� so
that both descriptions are equivalent. In an infinite crystal,
this link is broken: the modulus and the phase of the wave
function carry different information. In the MTP, the basic
assumption is that the polarization variation is a property of
the “current” and not of the “charge.”

In the BP approach6 of the modern theory, the total polar-
ization is defined by

P = Pion + Pel =
1

V
�

�

q�R� + �
nocc

P�n�, �2�

with

P�n� =
2ie

�2��3� dk�unk��k�unk	 , �3�

where unk are the Block states of the system and n runs over
all occupied bands. The value of P is obtained by computing
the total geometric quantum phase

�i =
V

e
Gi · P =

1

e
�

�

q�Gi · R� +
V

e
Gi · Pel, �4�

where the phase �i is defined modulo 2� and Gi is the
reciprocal-lattice vector in the ith direction8 defined in such a
way that Gi ·Ri=2� with Ri being a direct lattice vector. The
first term is a lattice summation and the second one, known
as “Berry phase,” is computed from first principles. In prac-
tice, Eq. �3� is evaluated by summing over a discrete mesh of
k points spanning the Brillouin zone. The total polarization
in the ith direction is thus obtained as follows:

Pi =
1

2�

e

V
�iRi. �5�

The main result of the MTP is that the polarization Pi is
now defined as a multivalued quantity �that is, modulo
eRi /V�. Nevertheless, the measurable quantity is the varia-
tion in polarization which instead corresponds to a well de-
fined single-valued quantity. According to the MTP, the po-
larization difference between two configurations of a crystal
can be evaluated provided that there exists a continuous
transformation pathway connecting them, which keeps the
system insulating.7 The difference in total polarization �in the
ith direction� �Pi will be well defined if the change in the BP
is accurately monitored along the configuration path connect-
ing two states of the crystal.

To compute the spontaneous polarization of a crystal, a
reference nonpolar configuration is needed �e.g., it could be
obtained by symmetry considerations�. In our case, the non-
polar configuration of the molecular crystal is obtained by
alternately flipping molecules with respect to the polar axis
�i=3 direction�. In Fig. 3 a schematic representation of the
transformation pathway we have chosen is shown, together
with the computed values of the polarization along the path.
The adopted strategy can be summarized as follows: �i� start-
ing from the polar configuration, we have enlarged9 the unit
cell preserving the crystal symmetry �from zero to five�; �ii�
we have rotated one molecule for each two until the related
dipole moment has been inverted �from 6 to 12�; �iii� then,
we have reduced the unit-cell volume down to its starting
value �from 13 to 18�.

The full circles in Fig. 3 represent the computed values of
the polarization P3 at each configuration, whereas the empty
circles are obtained from the former by adding an integer
multiple of eR3 /V. Indeed, a correct interpretation of the
obtained data requires that the multivalued character of po-
larization is properly taken into account. Each computed
value �full circles� is representative of a set of possible val-
ues of the polarization. Therefore, an infinite set of curves
�often referred to as branches� represents the polarization as
a function of the structural configuration along the continu-
ous transformation pathway connecting the polar and the
nonpolar states. Clearly two neighbor branches are separated,
at each configuration, by e�R3� /V. We note that the computed
values of polarization may belong to different branches. In
order to reconstruct the branches, we discretized the transfor-
mation pathway in successive small structural variations in

P = 0 P P

FIG. 2. Schematic representation of a two-dimensional system
with periodically repeated cations �black circles� and uniform elec-
tronic charge density �gray�. Different choices of the cell boundary
correspond to different values of the dipole moment per unit cell

that is, of the polarization as defined in Eq. �1��. On the contrary,
the macroscopic polarization is expected to be zero by symmetry.
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such a way that two consecutive values of P3 along the same
branch verify the relation ��P3��e�R3� /V.

Figure 3 well summarizes both the multivalued character
of the polarization and the branch independence of the po-
larization variation between the initial �zeroth� and final
�18th� configurations. In general, the variation in polarization
between two states of a crystal is branch independent only if
the related multivalued polarizations are characterized by the
same value of the modulus.

We stress that a detailed monitoring of the transformation
pathway is essential to compute the spontaneous polariza-
tion. As shown in Fig. 3, it is not possible to evaluate the
spontaneous polarization by considering only the polariza-
tion values at the initial and the final configurations: the re-
lation ��P3��e�R3� /V could be even misleading in this case.

The BP approach is employed to compute the piezoelec-
tric properties as well. In the linear regime, the polarization
changes induced by a small applied strain �about �1%� can
be written as follows:

�P3 = e31s1 + e32s2 + e33s3, �6�

where e3i are the piezoelectric stress constants, s1= �a
−a0� /a0, s2= �b−b0� /b0, s3= �c−c0� /c0 are the strains along
the x, y, and z axes, respectively, and a0, b0, c0 are the values
of the lattice parameters of the unstrained crystal. In our case
we have computed the polarization for both the unstrained
structure �P3

sp� and at several strained structures �P3
S�, with

equilibrium internal parameters determined at each strain
value. The piezoelectric stress constants e3i are directly ob-
tained from the slope of the linear fit of the �P3

S−P3
sp� versus

strain si curves, at small strains around the unstrained con-
figuration.

B. Computational details

The calculations have been performed using a plane-wave
pseudopotential approach based on the density-functional
theory �DFT� as implemented in the QUANTUM-ESPRESSO

package.10

We remark here that molecular crystals are mainly gov-
erned by intermolecular nonbonding interactions. Within
DFT, an ab initio treatment of intermolecular binding is
missing,11 whereas no restrictions are posed when exploring
the electronic properties at a fixed lattice structure.12–14

Hence, the crystal structure has been computed by adopting
the experimentally known space groups and lattice
constants,2 and relaxing the internal atomic coordinates.

Vanderbilt-type ultrasoft pseudopotentials15 have been
used with a plane-wave energy cutoff of 30 and 360 Ry for
the electronic wave functions and the total charge density,
respectively. The generalized gradient approximation with
the Perdew-Burke-Ernzerhof parametrization16 was em-
ployed for the evaluation of the exchange-correlation energy.

The polarization effects in the molecular crystal are com-
pared with those of the isolated ZNDA molecules and of
isolated molecular chains, in order to bring out enhancement
or depolarization effects induced by interactions. Isolated
molecules and molecular chains are treated by supercells.
The minimum vacuum width separating periodic replica is
about 22 Å for neighbor chains and about 17 Å for isolated
molecules. In both cases an accurate convergence check of
the vacuum region sizes confirmed that neighbor replica are
separated enough to prevent spurious interactions between
them. The Brillouin zone of the crystal was sampled using a
2�2�2 Monkhorst-Pack17 k-point grid while the density of
states �DOS� has been computed on a 12�12�12 k-point
grid. The 	-point specific algorithm has been used for super-
cells. The k-space integrations for the BP calculations has
been made on a uniform 3�3�7 k-point mesh. The con-
vergence of all the results with respect to the number of k
points and the plane-wave cutoff energy has been carefully
tested.

III. RESULTS

A. Collective polarization effects

The ZNDA molecular crystal is composed by screw-
shaped molecules with a dipolar backbone and a head group
that curtails lateral interactions without obstructing the head-
to-tail Coulombic interactions along the polar axis. This
means that the intermolecular interactions do not involve
chemical bond formation. As a consequence, it is expected
that the electronic structure of the crystal is quite similar to
that of the isolated molecule. In Fig. 4 the electronic DOS is
shown for both the molecular crystal and the isolated mol-
ecule. The zero of energy is set at the middle of the band gap
between occupied and empty states. The DOS reveals that
the ZNDA band gap depends on the molecular electronic
structure and is almost independent on the intermolecular
distance. This result guarantees that the transformation path-
way described in Fig. 2 keeps the system insulating, as re-
quired by the MTP.

FIG. 3. �Color online� Scheme of the transformation pathway
connecting the polar and nonpolar configurations of the crystal.
Starting from the polar �zeroth� configuration, the unit cell is en-
larged to increase the intermolecular distances. Then one molecule
for each two is reverted to obtain a nonpolar configuration. The cell
volume is then reduced down to its starting value. The computed
values of polarization �full circles� are distributed on four branches.
The polarization difference between the initial and the final states
�P3 does not depend on the choice of the branch. Its value is the
spontaneous polarization value of ZNDA. The insets show the crys-
tal configuration at some selected steps.
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As stated above, ZNDA crystallizes in an orthorhombic
face-centered structure, space-group Fdd2, with half a mol-
ecule in the asymmetric unit; a C2 rotation generates the
other half. As a result, eight molecules are associated to the
conventional unit cell 
black box in Fig. 1�b��: one for each
chain 
see Fig. 1�c��, characterized by the same structural
conformation. Moreover, by symmetry, the molecular dipole
moment is directed along the z axis �polar axis�. This means
that each molecule equally contributes to the total dipole
density, that is, to the polarization of the crystal. The polar-
ization can be thus rewritten in terms of single contributions
as follows:

P3 = nD3, �7�

where n=N /V is the dipole unit density, N is the number of
dipole units per cell, V is the cell volume, and D3 is the
unitary dipole moment. Of course, the latter is the dipole
moment associated to a single molecule. Equation �7� differs
from Eq. �1�: the latter is obtained from the charge distribu-
tion inside the unit cell, and thus it depends on the choice of
the cell boundaries, the former depends only on the number
of molecules associated with the unit cell, which is a well
defined quantity �N=8 molecules per cell in ZNDA�. A ques-
tion to be addressed is what happens to the molecular dipole
moment when molecules are arranged to form ZNDA crystal
structure. In order to answer this question, some points must
be taken into account: �i� the crystal can be viewed as a
system of opportunely packed chains of molecules, as clearly
shown in Fig. 1�c�; �ii� the dipole moment of each molecule
inside the crystal depends on both the intermolecular dis-
tance within the same chain and the interchain distance; �iii�
the dipole variation can be decomposed into two contribu-
tions: the first associated with the molecular electronic
charge at a fixed atomic configuration, and the second to the
molecular structural relaxation. Three different cases have
been thus considered: �i� crystals with fully optimized inter-

nal atomic positions �referred to as relaxed crystals�; �ii�
crystals with internal coordinates fixed so that each molecule
has the same structural configuration of the isolated one
�cooled crystals�; �iii� isolated molecular chains with internal
coordinates fixed so that each molecule has the same struc-
tural configuration of the isolated one.

Our analysis of the molecular dipole moment is shown in
Fig. 5. For the crystal, the unit-cell volume has been enlarged
keeping constant the ratio between lattice parameters, thus
preserving the space-group symmetry Fdd2. In chains, a te-
tragonal supercell has been adopted with a square basis fixed
at a=b=2.5c0. The dipole moment was achieved through BP
calculation of the polarization P3 and by using Eq. �7�; the
value of n is opportunely assigned for each system. As
shown in Fig. 5, D3 has been studied as a function of the
lattice parameter along the polar axis. At a fixed value of the
ratio c /c0 all the systems are characterized by the same in-
termolecular distance along the chains. The most relevant
feature of the curves is a dramatic increasing of the dipole
moment when molecules are brought out from the noninter-
acting limit and disposed at the crystallographic distance
along the chains. In Fig. 5 the value of the dipole moment for
the isolated molecule has also been reported �empty square�.
In this case, the dipole moment has been computed using Eq.
�1� where V is the volume of the cubic supercell with a=b
=c=2.5c0. The crystal packing causes a raise of about 36%
of the total dipole moment with respect to the isolated mol-
ecule, going from 8.21 to 11.16 D. By comparing the curves
for cooled and relaxed crystals, the former case leads to
nearly 70% of the total polarization enhancement, thus evi-
dencing that the polarization increase is mainly ascribed to
the electronic degree of freedom. This feature is also found
in other organic piezoelectric crystals.18 Interestingly, the
comparison between the curves for isolated molecular chains
and cooled crystals evidences that the interchain interaction
at the experimental distances �c /c0=1� lowers the polariza-
tion enhancement effect.

-20 -10 0

0

15

N x 30

-20 -10 0

0

15

30

Molecular crystal

Isolated molecule

D
O

S
(1

/e
V

)
E (eV)

FIG. 4. �Color online� Calculated electronic properties of the
ZNDA crystal and the isolated molecule. The zero energy is set at
the middle of the band gap between filled and empty states. N is the
number of molecules in the unit cell. The comparison between the
total DOS evidences that the band gap does not depend on the
intermolecular distance.

FIG. 5. �Color online� The dipole moment per molecule D3 as a
function of the intermolecular distance along the chain. The lines
are guides for eye. Two different systems are considered: isolated
chains and crystals �cooled and relaxed�. The latter can be viewed
as systems of packed chains �see text�. The insets show the molecu-
lar chain structure in correspondence of two different values of the
ratio c /c0.
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B. Piezoelectric properties

The polarization variation as a function of the applied
strain along the crystal axes is reported in Fig. 6. The nega-
tive value of the slopes is strictly connected to the nature of
piezoelectricity in organic crystals. At variance with inor-
ganic materials, organic piezoelectrics are modular systems
constituted by opportunely packed dipole units �typically
polymers or molecules�. By reducing �increasing� the cell
volume the dipole density will be higher �lower� leading to a
negative value of the piezoelectric stress constants. In inor-
ganic materials, piezoelectricity is instead mainly associated
with ions displacement: in this case the piezoelectric con-
stants can take even positive values and generally are higher
in modulus with respect to those in organic counterparts.19

Among organic piezoelectrics, polyvinylidene fluoride
�PVDF� is the most known, studied, and used for its piezo-
electric properties.1 For this reason, to give a quantitative
idea of the potential offered by ZNDA, we compare our re-
sults with that of PVDF. The spontaneous polarization and
piezoelectricity in ZNDA are presented in Table I, together
with that of PVDF as reported in Ref. 20. Our results evi-
dence two different piezoelectric responses depending on the
applied strain direction: �i� along the polar axis; �ii� in the
plane orthogonal to it. To give an insight on this point, let us
assume that the value of dipole moment unit does not change
by applying small strains to the experimental crystal struc-
ture. By using Eq. �7�, the polarization �indicated in this case
with P3

cd� would thus depend on the strain modulus as fol-
lows:

P3
cd�s� =

N

a0b0c0�1 + s�
D3

0 =
1

�1 + s�
P3

sp, �8�

where D3
0 is the dipole moment unit for the unstrained crystal

and s is the strain modulus. In Fig. 6 the dashed curve rep-
resents the polarization variation in this “constant dipole”
approximation whose analytic expression is easily written as

P3
cd − P3

sp = −
s

�1 + s�
P3

sp. �9�

As it is clearly shown in Fig. 6, the polarization variations
related to applied strain along nonpolar crystal axes well
agree with this model. On the other hand, polarization varia-
tion due to the applied strain along the polar axis is not fitted
by Eq. �9�, indicating that in this case the assumption of
constant dipole moment unit does not hold. This means that,
at variance with the intermolecular interaction along the
chain, the role of interchain interaction is negligible in the
piezoelectric response.

IV. CONCLUSIONS

In this work we have performed ab initio calculations in
the framework of the MTP in order to characterize the spon-
taneous polarization and the piezoelectric response of ZNDA
molecular crystal under an applied strain. We have computed
the piezoelectric stress coefficients and compared our results
to the most popular piezoelectric organic material, PVDF.
Even if the piezoelectric moduli of ZNDA are lower, they are
comparable with PVDF ones within the same order of mag-
nitude. Our results show that molecules disposed in crystal
configuration give rise to a collective polarization enhance-
ment, mainly due to the intermolecular interaction along the
polar axis direction. This property induces a relevant differ-
ence in piezoelectric response of ZNDA depending on the
strain direction, as clearly shown by the values of piezoelec-
tric coefficients relative to the strain along and orthogonal to
the polar axis. This feature may be useful in technological
applications where a dominant direction in piezoelectric re-
sponse is requested.
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TABLE I. Spontaneous polarization and piezoelectric constants �in C /m2� for ZNDA compared with
those computed for the organic ferroelectric polymer crystal PVDF as reported in Ref. 20. Experimental
lattice parameters are given in Å.

a0 b0 c0 P3
sp e31 e32 e33

ZNDA 28.057 11.363 11.325 0.082 −0.070 −0.075 −0.145

PVDF 0.178 −0.268 −0.270 −0.332
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